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Time series

Time-dependent data: (u(t), y target(t)), t = 1, . . .

Strong autocorrelation

Series length

undefined (in principle)
variable
infinite (in principle)

Time series tasks

Prediction: y target(n) = u(n + 1)

Classification: y⃗ target ∈ {0, 1}
Encoding-decoding y target(n) = F (u(n)), e.g. seq2seq
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Learning models

Input-output model

Data: (x , y target)i , i = 1 . . . n

Model: y(x) = φ(W L φ(. . . (W 1 x) . . . ))

Regression: minW ∥y target − y(x)∥2

NN are universal approximators (Cybenko, G., 1989)

Generalization, overfitting, etc.

Recurrent model

Data: y target(t), t = 1 . . .

Model: x(t) = φ
(
W x(t − 1) +W fb y(t − 1)

)
Recurrence: y(t) = W o x(t)
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Recurrent Neural Networks

Naive extension of back-propagation learning:

Ignore recurrence and regress at each time step

Unfolding through time is equivalent to an infinitely Deep NN
Computational/statistical issues

Computational cost
Gradient vanishing
Overfitting

BPTT (1988), LSTM (1999), Transformers (2017), etc.
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Echo State Networks

Reservoir: x(t) ∈ RN

N arbitrary (hyper-parameter)

1: Set constant W ,W fb

2: for t = 1 . . . ttrain do ▷ Regressor construction
3: u(t) = y target(t)
4: x(t + 1) = φ

(
W x(t) +W fb u(t)

)
5: end for
6: X = (x(1) . . . x(ttrain)) ▷ Regression
7: Y = (u(1) . . . u(ttrain))
8: ˆW out = argminW out ∥Y −W outX∥2
9: for t = ttrain . . . tpred do ▷ Prediction

10: x(t + 1) = φ
(
W x(t) +W fb u(t)

)
11: u(t + 1) = Ŵ out x(t + 1)
12: end for
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Success cases

Weather prediction

Econometrics

Natural Language Processing
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ESNs are universal approximators

Let In = B(0, 1) ⊂ Rn

A filter U is a functional U : (In)
Z → (Rd)Z

A filter U is causal if zτ = wτ for all τ ≤ t implies
U(z)t = U(w)t

A filter U is invariant if it commutes with the delay operator:
Tτ ◦ U = U ◦ Tτ , where Tτ (z)t = zt−τ

An ESN has an associated filter UESN if its activation function
φ is squashing (increasing, limz→±∞ φ(z) = ±1)

Theorem

Given a causal, invariant, continuous filter U, for all ϵ > 0 there
exists an ESN such that ∥U − UESN∥∞ < ϵ.

Grigoryeva, L., Ortega, J.-P. (2018). Echo state networks are universal
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The spectral radius of W

Recall the update equation:

x(t + 1) = φ
(
W x(t) +W fb u(t)

)
Assume:

No input: u(t) = 0

Linear activation φ(z) = z

Then, update reduces to:

x(t) = W x(t − 1)

Let ρ(W ) be the spectral radius de W: ρ(W ) = max |λ(W )|

x(t) = W t x(0) =

{
∞ if ρ(W ) > 1

0 if ρ(W ) < 1
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The Echo State Property

Definition

Uniqueness: An ESN has the Echo State Property (ESP) if
x(T ) = x ′(T ), given any input sequence u(t), t < T and any state
sequences x(t), x ′(t), t < T .

Theory: Given u(t) = 0, an ESN with ρ(W ) > 1 can not have
the ESP

Practice: ρ(W ) ≤ 1 is neither necessary nor sufficient for ESP

Edge of Criticality: intuition of the change point from simple
(∼ linear) to complex (∼ chaos)
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Empirical ESN design

Lukoševičius, M. (2012). A Practical Guide to Applying Echo
State Networks

Miguel Atencia ESN



12/24

Echo State Networks
Hyper-parameter setting

Clustering
Conclusions

Empirical design
Automatic hyper-parameter adjustment
Novel proposals

Reservoir size

Lukoševičius, M. (2012). A Practical Guide to Applying Echo State Networks

Data: y target(t) = sin(t) + ϵ ; ϵ ∼ U(0, 0.3)
Size: N = 500

Lukoševičius, M. (2012)

. . . the bigger the reservoir, the better the obtainable performance,
provided appropriate regularization measures are taken against overfitting
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Spectral radius

Lukoševičius, M. (2012). A Practical Guide to Applying Echo State Networks

Note: input scaling required: y target(t) = 10 (sin(n) + ϵ) ; ϵ ∼ U(0, 0.3)

ρ(W ) = 0.99 ; Etest = 0.391 ρ(W ) = 1.5 ; Etest = 0.207

Even ρ(W ) = 5 has been successfully used !!
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Self-normalized activation

Update equations

x(t) = φ
(
W x(t − 1) +W fb u(t − 1)

)
y(t) = W out x(t)

Activation function φ

Projection on hyper-sphere of radius r : SN−1
r = {p ∈ RN , ∥p∥ = r}

x(t)← r

∥x(t)∥
x(t)

Verzelli, P. et al. (2019). Echo State Networks with Self-Normalizing Activations on the Hyper-Sphere
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Theoretical results

The ESN with hyper-sphere projection:

has the Echo State Property

is Universal Approximator (φ is squashing)

works on the Edge of Criticality

The maximum Lyapunov exponent is 0
No chaotic behaviour can occur
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Empirical results

MSO = sum of sinusoid functions

ρ(W ) = 15 in the spherical ESN
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Memory-nonlinearity trade-off

y(n) = sin(ν u(k − τ))

τ ∼ Memory

ν ∼ Nonlinearity

Optimal ρ(W )
φ = tanh

Optimal ρ(W )
φ = projection
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Many other ideas

Ensembles

Deep ESN, sparsity

Learning models

Miguel Atencia ESN



19/24

Echo State Networks
Hyper-parameter setting

Clustering
Conclusions

Clustering

Ignore learning and pay attention only to dynamics:

u(t) = y target(t)

x(t + 1) = φ
(
W x(t) +W fb u(t)

)
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Results on Deep ESN Dynamic Clustering

Silhouette coefficient of clustering by layer
(for several values of input scaling).
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Q & A

Personal conclusions:

Answer Question Answer

Successful applications Do ESN work? Sort of

Theoretical results Why do ESN work? No idea

Easy implementation
Low computational cost

How do ESN work? Frustrating
hyperparameter
setting
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The future of ESN

Application Domains

Theoretical Understanding

Competition from Other Models
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