Challenges in Reservoir Computing Echo State Networks

Miguel Atencia

Universidad de Málaga

April 2024, Dauphine - PSL

Echo State Networks

- Definition
- Applications
- Mathematical properties
- 2 Hyper-parameter setting
 - Empirical design
 - Automatic hyper-parameter adjustment
 - Novel proposals

3 Clustering

4 Conclusions

Hyper-parameter setting Clustering Conclusions Definition Applications Mathematical properties

Time series

- Time-dependent data: $(u(t), y^{target}(t)), t = 1, ...$
- Strong autocorrelation
- Series length
 - undefined (in principle)
 - variable
 - infinite (in principle)

Time series tasks

- Prediction: $y^{\text{target}}(n) = u(n+1)$
- Classification: $\vec{y}^{\text{target}} \in \{0, 1\}$
- Encoding-decoding $y^{\text{target}}(n) = F(u(n))$, e.g. seq2seq

Hyper-parameter setting Clustering Conclusions Definition Applications Mathematical properties

Learning models

Input-output model

- Model: $y(x) = \varphi(W^L \varphi(\dots(W^1 x) \dots))$
- Regression: $\min_{W} ||y^{\text{target}} y(x)||^2$
- NN are universal approximators (Cybenko, G., 1989)
- Generalization, overfitting, etc.

Recurrent model

- Data: y^{target}(t), t = 1...
- Model: $x(t) = \varphi \left(W x(t-1) + W^{\text{fb}} y(t-1) \right)$
- Recurrence: $y(t) = W^o x(t)$

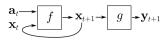
Definition Applications Mathematical properties

Recurrent Neural Networks

Naive extension of back-propagation learning:

- Ignore recurrence and regress at each time step
- Unfolding through time is equivalent to an infinitely Deep NN
- Computational/statistical issues
 - Computational cost
 - Gradient vanishing
 - Overfitting

• BPTT (1988), LSTM (1999), Transformers (2017), etc.



 $\sqrt[n]{}$ unfold through time $\sqrt[n]{}$

ESN

$$\mathbf{a}_{t} \rightarrow \overbrace{f_{1}}^{\mathbf{a}_{t+1}} \rightarrow \overbrace{f_{2}}^{\mathbf{a}_{t+2}} \overbrace{f_{3}}^{\mathbf{a}_{t+3}} \rightarrow \mathbf{x}_{t+3} \rightarrow \overbrace{g}^{\mathbf{a}_{t+3}} \underbrace{g}^{\mathbf{a}_{t+3}} \rightarrow \underbrace{g}^{\mathbf{a}_{t+3}} \underbrace{g}^{\mathbf{a}_{t+3}} \rightarrow \underbrace{g}^{\mathbf{a}_{t+3}} \underbrace{g}^{\mathbf{a}_{t+3}} \xrightarrow{\mathbf{a}_{t+3}} \xrightarrow{\mathbf{a}_{t+3}} \xrightarrow{\mathbf{a}_{t+3}} \underbrace{g}^{\mathbf{a}_{t+3}} \xrightarrow{\mathbf{a}_{t+3}} \xrightarrow{\mathbf{a}_{t+3}} \underbrace{g}^{\mathbf{a}_{t+3}} \xrightarrow{\mathbf{a}_{t+3}} \xrightarrow{\mathbf{a}_{t+3}} \underbrace{g}^{\mathbf{a}_{t+3}} \xrightarrow{\mathbf{a}_{t+3}} \xrightarrow{\mathbf{a}_{$$

Hyper-parameter setting Clustering Definition

w

Echo State Networks

 $\mathbf{y}_{l}^{\text{target}}(n)$ $\mathbf{w}^{\mathrm{out}}$ \mathbf{W}^{in} **Reservoir**: $x(t) \in \mathbb{R}^N$ *N* arbitrary (hyper-parameter) $\mathbf{v}(n)$ 1: Set constant W, W^{fb} $\mathbf{x}(n)$ 2: for $t = 1 \dots t^{\text{train}}$ do Regressor construction 3: $u(t) = y^{\text{target}}(t)$ $x(t+1) = \varphi \left(W x(t) + W^{\mathsf{fb}} u(t) \right)$ 4: 5: end for 6: $X = (x(1) \dots x(t^{\text{train}}))$ Regression 7: $Y = (u(1) \dots u(t^{\text{train}}))$ 8: $\hat{W}^{\text{out}} = \operatorname{argmin}_{W^{\text{out}}} ||Y - W^{\text{out}}X||^2$ 9: for $t = t^{\text{train}} \dots t^{\text{pred}}$ do Prediction $x(t+1) = \varphi \left(W x(t) + W^{\text{fb}} u(t) \right)$ 10: $u(t+1) = \hat{W}^{\text{out}} x(t+1)$ 11: 12: end for

Hyper-parameter setting Clustering Conclusions Definition Applications Mathematical properties

Success cases

• Weather prediction

Geophysical Research Letters

Research Letter 📋 Free Access

A Machine Learning-Based Global Atmospheric Forecast Model

Troy Arcomano, Istvan Szunyogh (2), Jaideep Pathak, Alexander Wikner, Brian R, Hunt, Edward Ott

First published: 07 May 2020 | https://doi.org/10.1029/2020GL087776 | Citations: 73

Econometrics

APPLIED ECONOMETRICS

RESEARCH ARTICLE 🖄 Open Access 🛛 🐵 🕀 回 🛞 🧕

Deep distributional time series models and the probabilistic forecasting of intraday electricity prices

Nadja Klein, Michael Stanley Smith 🚳 David J. Nott

First published: 23 January 2023 | https://doi.org/10.1002/jae.2959 | Citations: 1

• Natural Language Processing

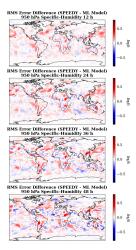
Echo State vs. LSTM Networks for Word Sense Disambiguation

Alexander Popov, Petia Koprinkova-Hristova 22, Kiril Simov & Petya Osenova

Conference paper | First Online: 09 September 2019

5325 Accesses | 5 Citations

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11731))



Definition Applications Mathematical properties

ESNs are universal approximators

Let $I_n = B(0,1) \subset \mathbb{R}^n$

- A filter U is a functional $U: (I_n)^{\mathbb{Z}} \to (\mathbb{R}^d)^{\mathbb{Z}}$
- A filter U is **causal** if $z_{\tau} = w_{\tau}$ for all $\tau \le t$ implies $U(z)_t = U(w)_t$
- A filter U is **invariant** if it commutes with the *delay* operator: $T_{\tau} \circ U = U \circ T_{\tau}$, where $T_{\tau}(z)_t = z_{t-\tau}$
- An ESN has an associated filter U_{ESN} if its activation function φ is squashing (increasing, $\lim_{z \to \pm \infty} \varphi(z) = \pm 1$)

Theorem

Given a causal, invariant, continuous filter U, for all $\epsilon > 0$ there exists an *ESN* such that $\|U - U_{\text{ESN}}\|_{\infty} < \epsilon$.

Grigoryeva, L., Ortega, J.-P. (2018). Echo state networks are universal

Definition Applications Mathematical properties

The spectral radius of W

Recall the update equation:

$$x(t+1) = \varphi\left(Wx(t) + W^{\mathsf{fb}}u(t)
ight)$$

Assume:

- No input: u(t) = 0
- Linear activation $\varphi(z) = z$

Then, update reduces to:

$$x(t) = W x(t-1)$$

Let $\rho(W)$ be the **spectral radius** de W: $\rho(W) = \max |\lambda(W)|$

$$egin{aligned} \mathbf{x}(t) &= \mathbf{W}^t \, \mathbf{x}(0) = egin{cases} \infty & ext{if }
ho(\mathbf{W}) > 1 \ 0 & ext{if }
ho(\mathbf{W}) < 1 \end{aligned}$$

Hyper-parameter setting Clustering Conclusions Definition Applications Mathematical properties

The Echo State Property

Definition

Uniqueness: An ESN has the *Echo State Property* (*ESP*) if x(T) = x'(T), given any input sequence u(t), t < T and any state sequences x(t), x'(t), t < T.

- Theory: Given u(t) = 0, an *ESN* with $\rho(W) > 1$ can not have the *ESP*
- Practice: $ho(W) \leq 1$ is neither necessary nor sufficient for ESP
- Edge of Criticality: intuition of the change point from simple (~ linear) to complex (~ chaos)

Empirical design Automatic hyper-parameter adjustment Novel proposals

Empirical ESN design

Home > Neural Networks: Tricks of the Trade > Chapter

A Practical Guide to Applying Echo State Networks

Mantas Lukoševičius

Chapter

66k Accesses 301 Citations 6 Altmetric

Part of the book series: Lecture Notes in Computer Science ((LNTCS, volume 7700))

Lukoševičius, M. (2012). A Practical Guide to Applying Echo State Networks

Empirical design Automatic hyper-parameter adjustment Novel proposals

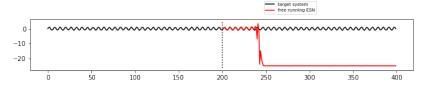
Reservoir size

Lukoševičius, M. (2012). A Practical Guide to Applying Echo State Networks

For challenging tasks use as big a reservoir as you can afford computationally.

 $N_{\rm x}$ should be at least equal to the estimate of independent real values the reservoir has to remember from the input to solve its task.

• Data:
$$y^{\text{target}}(t) = \sin(t) + \epsilon$$
; $\epsilon \sim \mathcal{U}(0, 0.3)$
• Size: $N = 500$



Lukoševičius, M. (2012)

... the bigger the reservoir, the better the obtainable performance, provided appropriate regularization measures are taken against overfitting

Empirical design Automatic hyper-parameter adjustment Novel proposals

Spectral radius

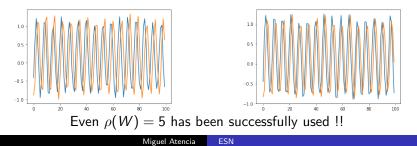
Lukoševičius, M. (2012). A Practical Guide to Applying Echo State Networks

$$\label{eq:rescaled} \begin{split} \rho(\mathbf{W}) < 1 \text{ ensures echo state property in most} \\ \text{situations.} \end{split}$$

The spectral radius should be greater in tasks requiring longer memory of the input.

Note: input **scaling** required:
$$y^{ ext{target}}(t) = 10(\sin(n) + \epsilon); \quad \epsilon \sim \mathcal{U}(0, 0.3)$$

$$ho(W) = 0.99$$
 ; $E_{test} = 0.391$ $ho(W) = 1.5$; $E_{test} = 0.207$



Empirical design Automatic hyper-parameter adjustment Novel proposals

Self-normalized activation

Update equations

$$\begin{aligned} x(t) &= \varphi \left(W x(t-1) + W^{\mathsf{fb}} u(t-1) \right) \\ y(t) &= W^{\mathsf{out}} x(t) \end{aligned}$$

Activation function φ

Projection on hyper-sphere of radius r: $\mathbb{S}_r^{N-1} = \{p \in \mathbb{R}^N, \|p\| = r\}$

$$x(t) \leftarrow rac{r}{\|x(t)\|} x(t)$$

Verzelli, P. et al. (2019). Echo State Networks with Self-Normalizing Activations on the Hyper-Sphere

Empirical design Automatic hyper-parameter adjustment Novel proposals

Theoretical results

Article Open access Published: 25 September 2019

Echo State Networks with Self-Normalizing Activations on the Hyper-Sphere

<u>Pietro Verzelli</u> [⊡], <u>Cesare Alippi</u> & <u>Lorenzo Livi</u>

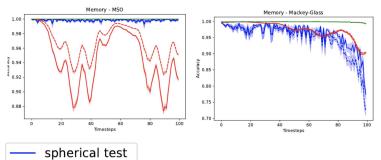
Scientific Reports 9, Article number: 13887 (2019) Cite this article

The ESN with hyper-sphere projection:

- has the Echo State Property
- is Universal Approximator (φ is squashing)
- works on the Edge of Criticality
 - The maximum Lyapunov exponent is 0
 - No chaotic behaviour can occur

Empirical design Automatic hyper-parameter adjustment Novel proposals

Empirical results



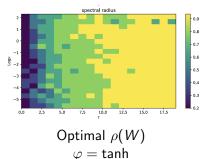
- ---- spherical train
- tanh test
- ---- tanh train
- linear test
- ---- linear train

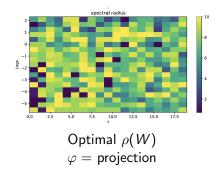
- *MSO* = sum of sinusoid functions
- $\rho(W) = 15$ in the spherical *ESN*

Empirical design Automatic hyper-parameter adjustment Novel proposals

Memory-nonlinearity trade-off

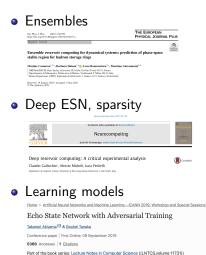
- $y(n) = \sin(\nu u(k \tau))$
- $\tau \sim {\rm Memory}$
- $\nu \sim {\rm Nonlinearity}$





Empirical design Automatic hyper-parameter adjustment Novel proposals

Many other ideas



Miguel Atencia

ESN

Clustering

Home > Artificial Neural Networks and Machine Learning – ICANN 2020 > Conference paper

Time Series Clustering with Deep Reservoir Computing

<u>Miguel Atencia</u>[™], <u>Claudio Gallicchio</u>, <u>Gonzalo Joya</u> & <u>Alessio Micheli</u>

Conference paper | First Online: 14 October 2020

2250 Accesses 2 Citations

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12397))

Ignore learning and pay attention only to dynamics:

$$u(t) = y^{\text{target}}(t)$$
$$x(t+1) = \varphi \left(W x(t) + W^{\text{fb}} u(t) \right)$$

Dynamic clustering

Algorithm 1 Dynamic clustering through evolution of the RC model.

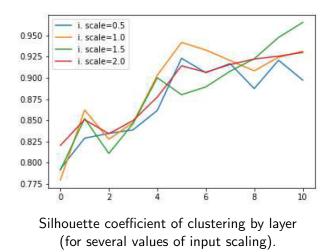
Require: Dataset of *n* time series \mathbf{u}_j with lengths l_j , $j = 1 \dots n$.

Ensure: k centroids

- 1: Initialise weight matrices $\mathbf{U}^{(i)}, \mathbf{W}^{(i)}, i = 1 \dots L$, and replicate *n* identical instances
- 2: Initialise all instances states $\mathbf{h}^{(i)}(0) = 0, i = 1...L$
- 3: for t = 1 to $\max_j l_j$ do
- 4: for j = 1 to n do
- 5: if $t \leq l_j$ then
- 6: Update the corresponding ESN instance by Equation (1)
- 7: end if
- 8: end for
- 9: if t = 1 then
- 10: Initialize centroids
- 11: else
- 12: Set initial centroids to centroids resulting from step t-1
- 13: end if
- 14: Build the dataset $\mathbf{Y}(t)$ of *n* reservoir states, where $\mathbf{Y}_{i.}(t) = \left(\mathbf{h}^{(1)}, \dots \mathbf{h}^{(L)}\right)$
- 15: Compute centroids at step t from clustering of dataset $\mathbf{Y}(t)$

16: end for

Results on Deep ESN Dynamic Clustering



Personal conclusions:

Answer	Question	Answer
Successful applications	Do ESN work?	Sort of
Theoretical results	Why do ESN work?	No idea
Easy implementation	How do ESN work?	Frustrating
Low computational cost		hyperparameter
		setting

The future of ESN

ChatGPT 3.5 ~

\Lambda You

what is the future of echo state networks

ChatGPT

As of my last update in January 2022, Echo State Networks (ESNs) were a type of recurrent neural network (RNN) that showed promise in certain applications, particularly in time-series prediction and signal processing tasks. ESNs are known for their simple training procedure, efficient computation, and good generalization performance. However, like any technology, their future depends on several factors:

- Application Domains
- Theoretical Understanding
- Competition from Other Models

Thanks to:

- CEREMADE (Madalina, Katia, and everyone)
- Dauphine-PSL

Miguel Atencia matencia@uma.es